Department of Mathematics
 Babu Banarasi Das National Institute of Technology \& Management, Lucknow

RAS 301 Engineering Mathematics III: B. Tech. (Third Semester) - 2018-19
 Assignement-2 (Unit-4) Numerical Techniques-II

1 Solve the equations, by Gauss -Seidel method and Guass Jacobi method also find the

$$
3 x+y+z=1, x+3 y-z=11, x-2 y+4 z=21 .
$$

2 Solve by Crout's method $x_{1}+x_{2}+x_{3}=1,3 x_{1}+x_{2}-3 x_{3}=5, x_{1}-2 x_{2}-5 x_{3}=10$.
3. From the following table, find first and second derivative at $\mathrm{x}=1.5$

x	1.5	2	2.5	3	3.5	4
$\mathrm{f}(\mathrm{x})$	3.375	7.0	13.625	24	38.875	59.0

4. A rod is rotating in a plane. The following table given the angle θ (in radian) through which the rod has turned for various values of time t (in seconds) .
Calculate the angular velocity and angular acceleration of the rod at $t=0.6$ seconds:

t	0	0.2	0.4	0.6	0.8	1.0	1.2
θ	0	0.12	0.49	1.12	2.02	3.20	4.67

5. Evaluate (i) $\int_{0}^{\frac{\pi}{2}} \sin x d x$ by Trapezoidal Rules
(ii) Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by (a) Simpson's $1 / 3$ rule (b) Simpson's $3 / 8$ rule.
6. Find the value of y for $x=0.1$ by Picard's method, given that $\frac{d y}{d x}=1+x y, y(0)=1$.
7. Apply Euler's Modified method to solve $\frac{d y}{d x}=x+3 y$ subject to $y(0)=1$ and hence find an approximate value of y when $\mathrm{x}=1$.
8. Using Euler's method, find an approximate value of y corresponding to $\mathrm{x}=1.4$ given $\frac{d y}{d x}=x y^{\frac{1}{2}}$ and $\mathrm{y}=1$ when $\mathrm{x}=1$.
9. Using Runge-Kutta method of fourth order to solve $\frac{d y}{d x}=x+y^{2}$ with $\mathrm{y}(0)=1$ for $\mathrm{x}=$ 0.2 .
10. Using Runge Kutta method of fourth order, solve $\frac{d y}{d x}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ with $y(0)=1 \quad$ at $x=0.2$ and $x=0.4$.
11. Using Runge Kutta method of fourth order, solve $\frac{d y}{d x}=x-y$ with $\mathrm{y}(1)=1$ find y for $\mathrm{x}=1.1$,
