Department of Mathematics
 Babu Banarasi Das National Institute of Technology \& Management, Lucknow

RAS 301 Engineering Mathematics III: B. Tech. (Third Semester) - 2018-19 Assignment-5 (Unit-5) Integral \& z - Transform

1. Using Fourier integral representation, hence show that $e^{-a x}=\frac{2 a}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{a^{2}+\lambda^{2}}$
2. Obtain Fourier cosine transform of $f(x)=\left\{\begin{array}{lr}x, & \text { for } 0<x<1 \\ 2-x, & \text { for } 1<x<2 \\ 0, & \text { for } x<2\end{array}\right.$
3. Find the Fourier sine transform of $F(x)=\left\{\begin{array}{ccc}1-x^{2}, & \text { if } & |x|<1 \\ 0, & \text { if } & |x|>1\end{array}\right.$. and use it to evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x$.
4. Using Fourier cosine integral representation of an appropriate function, show that $\quad \int_{0}^{\infty} \frac{\cos w x}{k^{2}+w^{2}} d w=\frac{-\pi e^{-k x}}{2 k}$.
5. Solve $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$ for $x \geq 0, t \geq 0$ under the given conditions $u=u_{0}$ at $x=0$, $t>0$ with initial condition $u(x, 0)=0, x \geq 0$.
6. Use Fourier sine transform to solve the equation $\left(\frac{\partial u}{\partial x}=2\left(\frac{\partial^{2} u}{\partial x^{2}}\right)\right)$ under the conditions (i). $u(0, t)=0$, (ii). $U(x, 0)=e^{-x}$, (iii) $u(x, t)$ is bounded.
7. Solve $\frac{\partial v}{\partial x}=\frac{\partial^{2} y}{\partial x^{2}}$ subject to the condition $\mathrm{v}(0, \mathrm{t})=1, \mathrm{v}(\pi, \mathrm{t})=3, \mathrm{v}(\mathrm{x}, 0)=1$ for $0<x<\pi, t>0$.
8. Find the z - transform of (a) $\frac{z}{z^{2}+7 z+10} \quad$ (b) $\frac{z^{3}-20 z}{(z-2)^{2}(z-4)}$.
9. Find the inverse z-transform of $\frac{1}{(z-3)(z-2)}$ (a) $|z|<2$, (b) $2<|z|<3$ and (c) $|z|>3$.
10. Evaluate $z^{-1}\left[\frac{3 z^{2}-18 z+26}{(z-2)(z-3)(z-4)}\right]$.
11. Use Z-transform to solve the difference equation $y_{n+2}-2 y_{n+1}+y_{n}=3 n+5$.
12. Using z-transform, solve the following difference equation

$$
y_{k+2}+4 y_{k+1}+3 y_{k}=3^{k}, \text { given that } y_{0}=0 \text { and } y_{1}=1 .
$$

13. Solve using z-transform: $y_{x+1}-2 \cos \alpha y_{x+1}+y_{x}=0, y_{0}=1, y_{1}=1$.
